Roll No.

Total Printed Pages - 7

F - 763

M.A./M.Sc. (Third Semester) EXAMINATION, Dec. - Jan., 2021-22 MATHEMATICS

Paper Second

(Partial Differential Equations and Mechanics -I)

Time : Three Hours]

Note: Attempt all sections as directed.

Section - A

(Objective/Multiple Choice Questions)

(2 Marks each)

[Maximum Marks: 80

Note: Attempt all questions.

Choose the correct answers:

1. The function $: \phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{n/2}} e^{\frac{-|x|^2}{4t}} & x \in \mathbb{R}^n, t > 0 \\ 0 & x \in \mathbb{R}^n, t < 0 \end{cases}$

is fundamental solution of.

- (A) Laplace equation
- (B) Wave equation
- (C) Transport equation
- (D) Heat equation

[2]

- 2. If U(x,y) is a harmonic function in $R^2, P_0(x_0,y_0) \in R^2,$ $K_a = \left\{ P \in R^2 : \left| P P_0 \right| \le a \right\} \text{ and } C_a = \partial K_a. \text{ Then U (Po)} =$
 - (A) $\frac{1}{4\pi a^2} \iint_s U(P) dS_p$
 - (B) $\frac{1}{4\pi a} \iint_{c_a} U(P) dS_p$
 - (C) $\frac{1}{2\pi a} \iint_{C_a} U(P) dS_p$
 - (D) $\frac{1}{2\pi a} \iint_{K_a} U(P) dS_p$
- 3. If U(P) be a harmonic function in the domain $\,\Omega$ and U be bounded from above. Then which of the following is true?
 - (A) If U attains sup U in Othen U is constant.
 - (B) If U is constant then U attains sup U in Ω .
 - (C) Both (A) and (B)
 - (D) None
- 4. The PDE $U_t + bDU = 0$ represents -
 - (A) Laplace's equation
 - (B) Wave equation
 - (C) Heat equation
 - (D) Transport equation

- 5. The constrains involved in the motion of rigid bodies, are
 - (A) Holonomic
 - (B) Non Holonomic
 - (C) Both (A) and (B)
 - (D) None
- 6. For conservative systems, the Hamiltonian function H =
 - (A) K.E.
 - (B) P.E.
 - (C) K.E. + P.E.
 - (D) None
- 7. If linear momentum $\vec{P} = P_x \hat{i} + P_y \hat{j} + P_Z \hat{k}$ and angular momentum $\vec{L} = L_x \hat{i} + L_y \hat{j} + L_Z \hat{k}$ then poisson bracket $[P_Z, L_y] =$
 - (A) P_Z
 - (B) P_y
 - (C) $-P_{x}$
 - (D) P_{x}
- 8. The path of a particle, sliding from one point to another in the absence of friction in the shortest time is:

P.T.O.

- (A) Straight line
- (B) Circle
- (C) Cycloid
- (D) Catenary

9. Attraction of a disc of infinite radius and small thickness k at a point on the axis of the disc at a distance P is -

(A)
$$2\pi\gamma kg \left[1-\frac{P}{\sqrt{a^2+p^2}}\right]$$

- (B) $4\pi\gamma k$ §
- (C) 2πγk_ε
- (D) 3πγk_ε
- 10. If V is the potential of an attracting system at any point P(x, y, z) which does not coincide with any of the

attracting particles then: $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial Z^2} =$

- (A) $4\pi\gamma$?
- (B) $-4\pi\gamma$ §
- (C) $-2\pi\gamma$?
- (D) 0

Section - B

(Very Short Answer Type Questions)

(2 Marks each)

Note: Attempt all questions.

- Write the statement of Poisson's theorem in polar coordinates:
- 2. Define generalised momentum.
- 3. Write Hamilton's principle.

- [6]
- Section D

(Long Answer Type Question)

(5 Marks each)

Note: Attempt all questions.

Derive D'Alembert's formula.

OR

State and prove mean value formula's for Laplace's equation.

2. Derive fundamental solution of Laplace's equation.

OR

If $U \in C(U)$ satisfies the mean value property for each ball $B(x,r) \subset U$ then show that $U \in C^{\infty}(U)$.

3. Show that Poisson Bracket under canonical transformation is invariant.

OR

State and prove Hamilton's canonical equations.

4. Prove that the attraction of a thin uniform cylindrical shell of radius a and length ℓ at a point on its axis at a distance b from one end, $\ell-b$ from the other $\left(b<\frac{\ell}{2}\right)$ is:

- 4. Define Poisson Brackets.
- 5. Write integral of motion in Poisson Bracket form.
- 6. Write maximum principle for Laplace's equation.
- 7. Wrie Harnack's inequality.
- 8. Write relation between attraction and potential.

Section - C

(Short Answer Type Questions)

(3 Marks each)

Note: Attempt all questions.

- 1. Find the attraction of a thin uniform spherical shell at an external point.
- 2. Determine the potential of a thin uniform circular disc.
- 3. State and prove conservation theorem for generalised momentum.
- 4. Show that the Hamiltonian function H represents the total energy of the system.
- 5. State and prove Jacobi identity for poisson brackets.
- 6. If $\phi(x,t)$ is the fundamental solution of the Heat equation then show that $\int_{\mathbb{R}^n} \phi(x,t) dx = 1$
- 7. Two particles of masses m_1 and m_2 more under the action of their gravitational interaction. Find the Lagrangian equation.
- 8. Prove that the shortest distance between two points in a plane is a straight line.

[7]

$$y \frac{m}{2\pi a l} \left[\frac{1}{\sqrt{a^2 + b^2}} - \frac{1}{\sqrt{a^2 + (l - b)^2}} \right]$$

where M is the mass of the shell, the ends of the shell are open and circular.

OR

Show that the attraction of a solid hemisphere at the centre of its plane base is $\frac{3}{2}\frac{\gamma M}{a^2}$, where M is the mass and a is the radius.